

Static sealing

Sealing rotating shafts

Sealing reciprocating shafts

Dr Hengan Ou Coates B80a <u>h.ou@nottingham.ac.uk</u>

Learning Objectives

- To be able to identify a number of different types of sealing devices
- To be able select a suitable seal for static, rotating or reciprocating condition
- To be able to determine groove dimensions of "O" ring using British Standards via <u>NUsearch</u> and select a radial lip seal via seal manufacturer's catalogue (e.g. SKF, James Walker)
- To be able to estimate the leakage flow through a labyrinth seal

Types of Seals

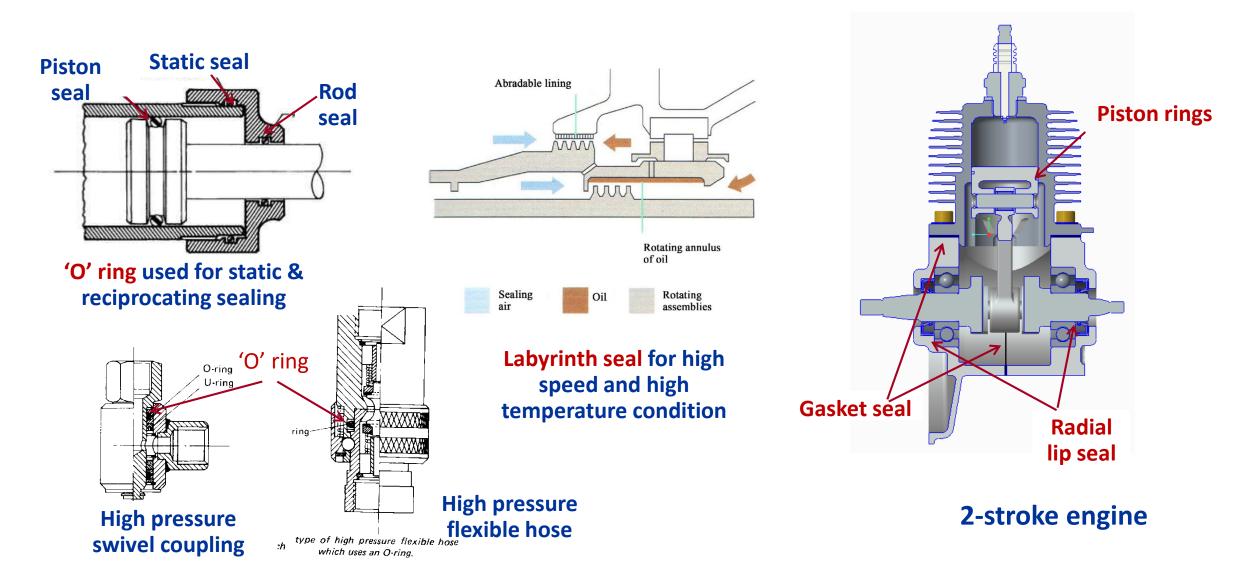
Part 1: • Static Sealing

- General principles of fluid sealing
- 'O' rings
- Gaskets

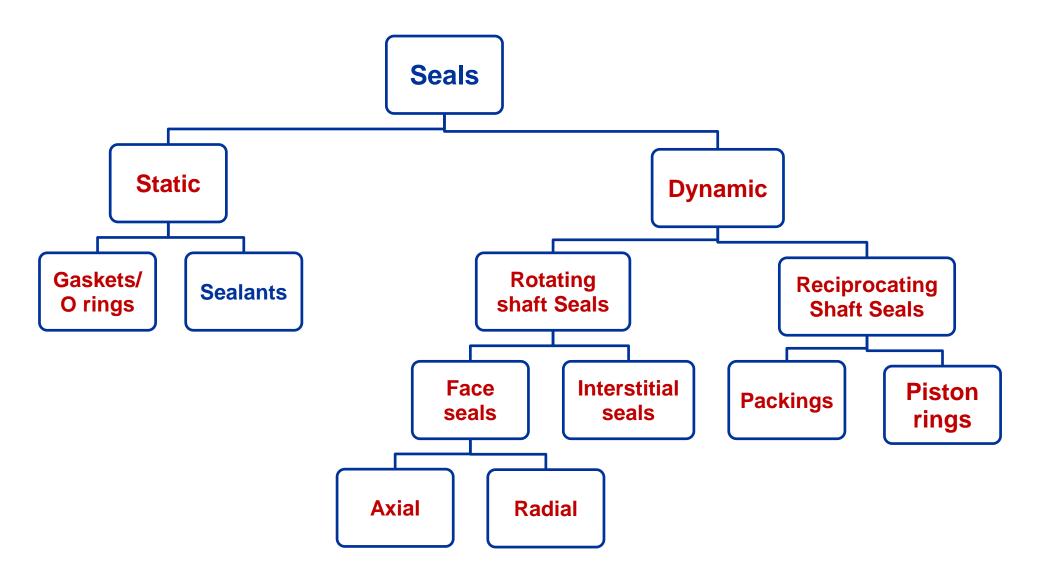
Part 2: • Seals for Rotating Applications

- Low pressure & cold condition incl radial lip seal
- High pressure
- Hot condition

<u>Part 3:</u>


• Seals for Reciprocating Applications

- Hot conditions, fast movement
- Hot conditions, slow movement
- Worked examples
 - "O" ring selection via BSI (British Standard Institution)
 - Radial lip seal selection via SKF (a bearings & seals manufacturer)


Functions

• Seals are devices used to prevent or limit leakage of fluids or particulates.

Seals Part 1

Classification of seals

Modified from Childs, P.R.N., 2004

Selection and design considerations

What do Seals do?

- Keep fluid in
- Keep dirt out
- Allow motion:
 - linear
 - rotational
- Allow disassembly

How do they do it?

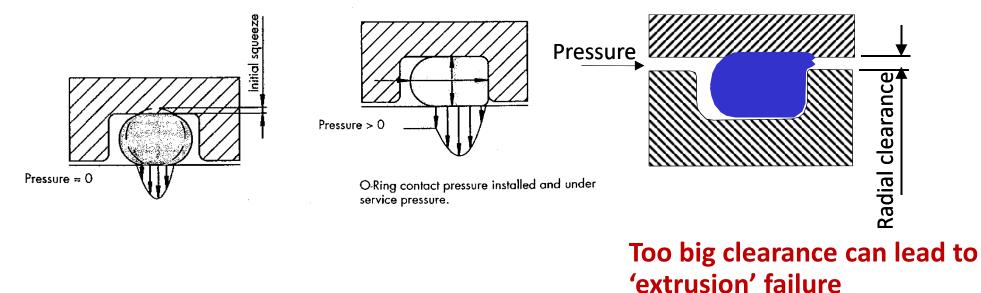
- Physical barrier
- Tortuous path

What are the design considerations?

- Fluids, grease or compressed air
- Pressures
- Temperatures
- Motions
 - linear
 - rotational
 - speeds
- Cost/Fabricability
- Longevity
- Level of sealing

'O' Rings – static & slow motion

- "Toroidal", "elastomeric"
- Simple & versatile for static and low-speed application
- Requiring an **interference fit** with one of the mating parts
- Application is codified use a standard where possible (e.g. BS 4518:1982)

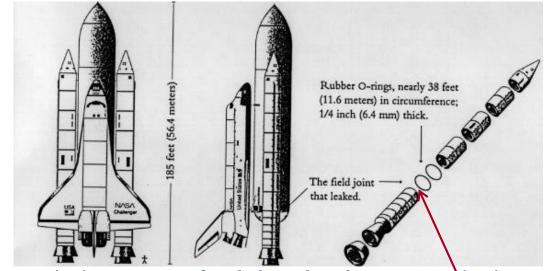


Note: BS ISO 3601-1~5 defines another set of "O" ring details.

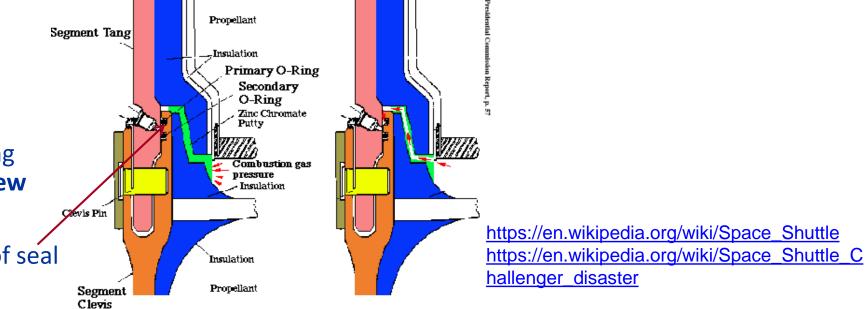
Sized by internal diameter (ID) & section diameter (A)

'O' Ring Sealing Mechanism

- Incompressible rubber get the SQUEEZE through correct groove dimensions;
- Pre-compression ensures sealing when no pressure;
- When pressure is applied the ring is forced against gap and seals it.



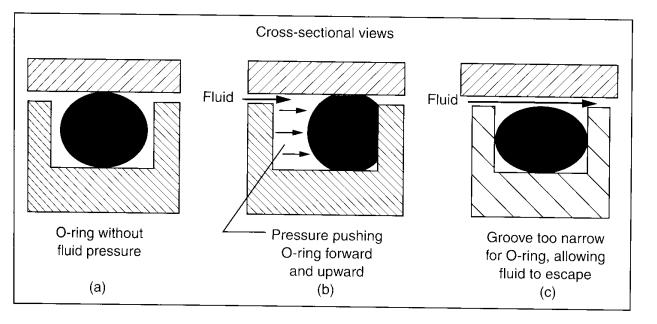
Challenger space shuttle disaster


28th Jan 1986, Space Shuttle Challenger broke apart 73 seconds into its flight, leading to the deaths of its seven crew members

Detail of seal

Seals Part 1

Failed O-Rings of **solid rocket booster**, which is made of sections



Case study of Challenger Space Shuttle Disaster

Seals Part 1

What went wrong?

- At low temperatures, O-rings lost their resilience;
- Booster cases distorted greatly during launch;
- Insufficient groove width in O-ring design.

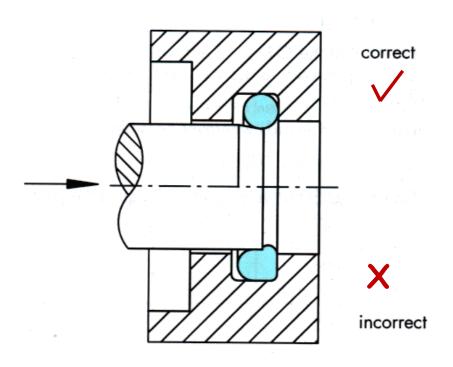
FIGURE 4.15 (a) O-ring in groove; (b) O-ring acting as a seal under pressure; (c) O-ring placed in a groove of insufficient width, leading to leakage of the fluid. *Source:* Adapted from Kamm, 1991.

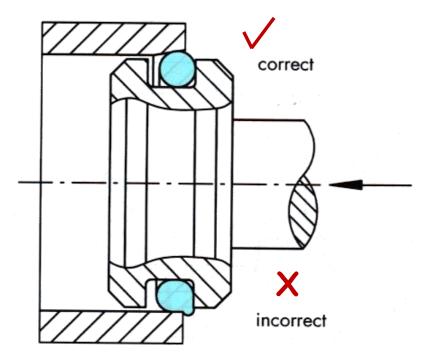
Common Forms of Failure

- Abrasion: sealing face is worn away.
- <u>Solution:</u>
 - Smoother surface to $0.4\mu m$ Ra;
 - Harder 'O' ring material;
 - Better lubricant;
 - Reduced speed.
- <u>Compression set:</u> the sealing face is permanently distorted.
- Solution:
 - Higher temperature-resistant 'O' ring.

Abrasion

Compression set


Seals Part 1


Common Forms of Failure

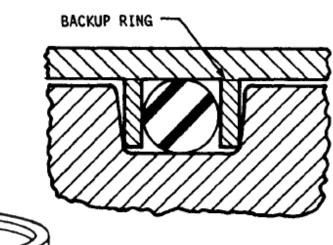
- Installation damage: Damaged during installation.
- Solution:
 - Chamfer & blending radii.

Installation damage

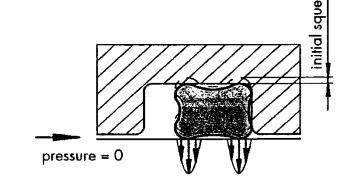
Common forms of Failure

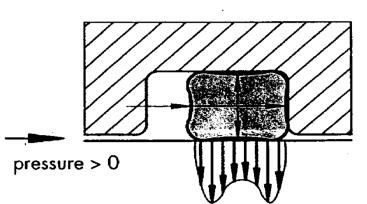
- Extrusion: the 'O' ring is forced into the sealing clearance.
- <u>Solution:</u>
 - Smaller clearances <0.13 mm;
 - Harder material;
 - Different cross section of ring;
 - Use Backup Ring;
 - Backup rings from a range of shapes & sizes (BS 5106:1988).

Spiral


solid

split

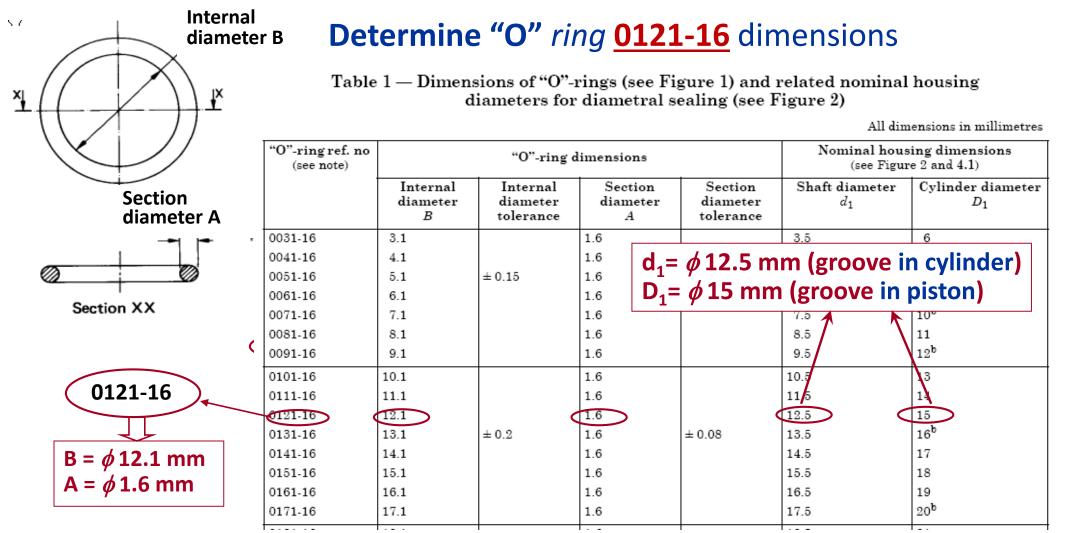




Seals Part 1

Common forms of Failure

- <u>Spiral damage:</u> 'O' ring is twisted and leaks.
- <u>Solution:</u>
 - Lower reciprocating speed;
 - Harder material;
 - Different cross section of ring e.g. quadrant seal,
 - "Nu-lip" or "Quad" rings having a roughly square or X-shaped section.

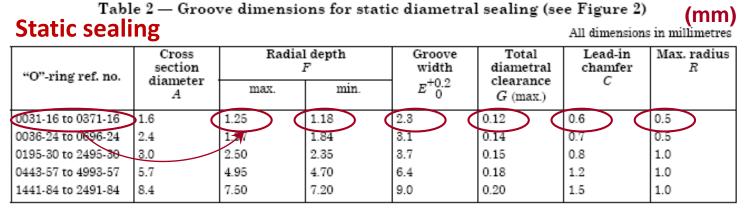


Spiral damage

'O' Ring dimensions Example (BS 4518:1982+A2:2014)

BS 4518:1982+A2:2014, Specification for metric dimensions of toroidal sealing rings ('O' rings) & their housings

Seals Part 1


Static/dynamic diametral sealing, hydraulic Seals Part 1 & pneumatic

- Up to 100 bar for static loading;
- Up to 14 bar & 3.8 m/s for dynamic loading.
- Blend radi G 窳 ϕd_2 ax.= $\phi d_1 \min$. +2F max. = $\phi d_1 \max$. +2F min Lead-in $\phi = \phi d_1$ nom-20 φd₂ max. = φd1min.+Gmax. Shaft¢d₁ (see 4.2) **T**C 15° lead – in 16D **Groove in cylinder** 0° 0 both sides С G F R ϕD_2 φD2 min.= φD1 max-G max. Lead-in φ = ΦD:nom+2C ΦD₁ (see 4.2) ₩ 9 R0.2 to 0.4 **Groove in piston** 1.60 <1.6 ↓ Ε From BS 4518:1982+A2:2014

- Groove dimensions
 - F radial depth
 - **E** groove width
 - **G** total clearance
 - **C** lead–in chamfer
 - **R** radius

Static/dynamic diametral sealing, hydraulic & pneumatic From BS 4518:1982 Example

Seals Part 1

Determine suitable groove in cylinder for an 0221-16 for static sealing

Table 3 — Groove dimensions for dynamic diametral sealing in hydraulic applications (see Figure 2)

Dynamic: hydraulic

All dimensions in millimetres

All dimensions in millimetres

"O"-ring ref. no.	Cross section diameter A	Radial depth F		Groove width	Total diametral	Lead-in chamfer	Max. radius R
		max.	min.	$E_{0}^{+0.2}$	clearance G (max.)	C	
0036-24 to 0176-24	2.4	2.09	1.97	3.2	0.14	0.6	0.5
0195-30 to 0445-30	3.0	2.65	2.50	4.0	0.15	0.7	1.0
0443-57 to 1443-57	5.7	5.18	4.95	7.5	0.18	1.0	1.0
1441-84 to 2491-84	8.4	7.75	7.50	11.0	0.20	1.2	1.0

Groove in cylinder dimensions

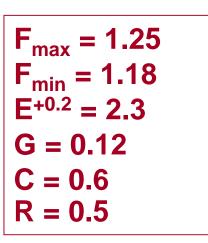
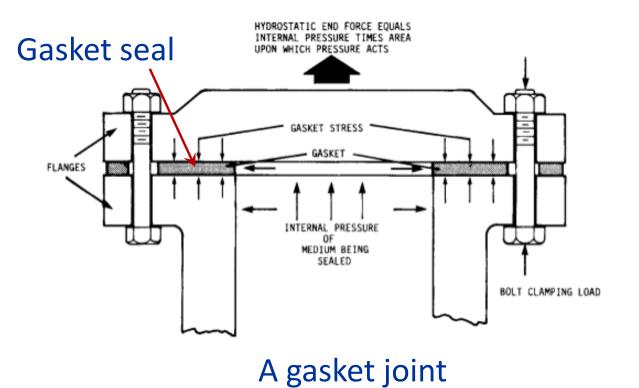


Table 4 — Groove dimensions for dynamic diametral sealing in pneumatic applications (see Figure 2)

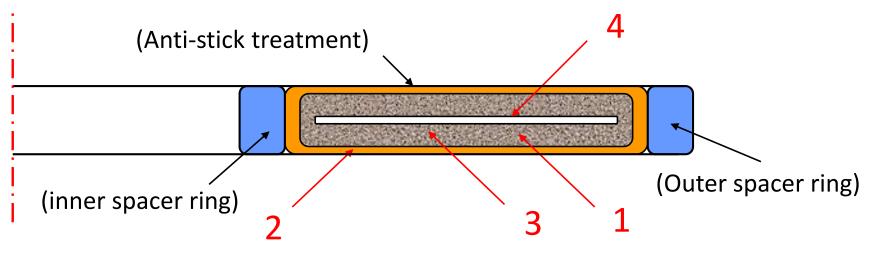
Dynamic: pneumatic


"O"-ring ref. no.	Cross section diameter A	Radial depth F		Groove width	Total diametral	Lead-in chamfer	Max. radius <i>R</i>
		max.	min.	$E_{0}^{+0.2}$	clearance G (max.)	С	
0036-24 to 0176-24	2.4	2.20	2.13	3.2	0.14	0.6	0.5
0195-30 to 0445-30	3.0	2.77	2.70	4.0	0.15	0.7	1.0
0443-57 to 1443-57	5.7	5.38	5.22	7.5	0.18	1.0	1.0
1441-84 to 2491-84	8.4	7.96	7.75	11.0	0.20	1.2	1.0

Material Compatibility

Material	Hardness (Shore A)	Temps (°C)	Uses		
Nitrile rubber	70	-30 ~ +110	General purpose: fuel, oils, water, hydraulic fluid		
Silicone	70	-60 ~ +200	Medical – body fluid resistant, low temp, alcohol, oxygen	<u>Shore A hardr</u>	ness
Viton (fluorocarbon)	85	-20 ~ +200	High temperature, extreme chemicals	Rubber band Pencil eraser	20 40
Polyurethane	95	-30 ~ +110	High temps, oil, gas and hydraulics resistant, good wear	Tire tread Shoe heel	70 80

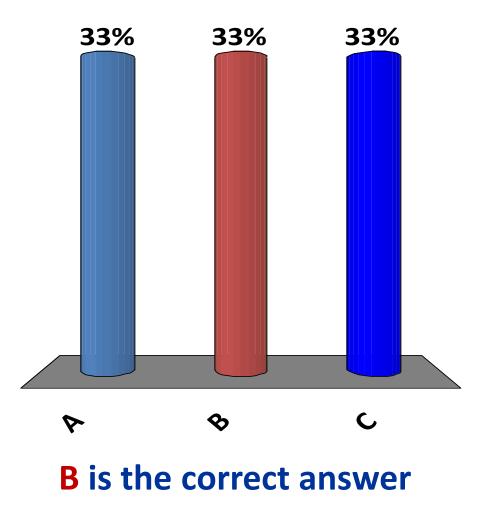
Other Static Seals - Gaskets


- A material or combination of materials clamped between two separable members to form a joint.
- Its function is to affect a seal between members (flanges) and maintain the seal for a prolonged period.
- Must be:
 - Impervious & resistant to the medium;
 - Withstand the application of temperatures.

Seals Part 1

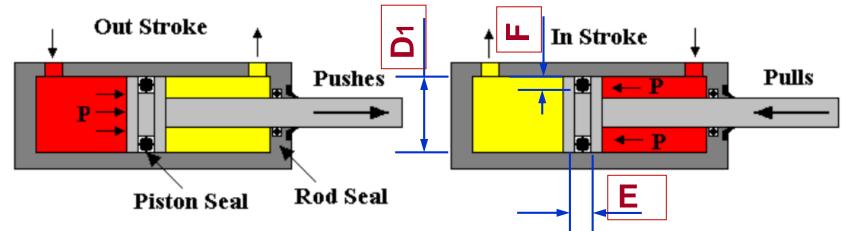
Gasket Anatomy

- 1. Base material: compliant element cork, cellulose fibre, asbestos or non-asbestos fibre)
- 2. Binders: temperature and chemical resistance rubber, elastomeric, resins
- 3. Fillers: fill voids in the base material rubber, elastomeric, resins
- 4. Reinforcements: prevent distortion metal or fabric core



Quiz 1: BS4518:1982 "O" rings

What are the internal diameter (ID) and section diameter (A) of a 0493-57 "O" ring?

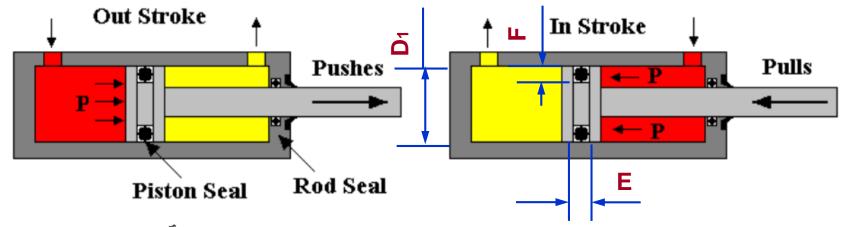


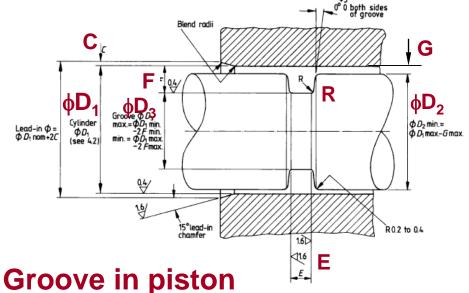
- A. ID = 493 mm and A = 57 mm
- **B. ID = 49.3** mm and **A = 5.7** mm
- **C. ID = 4.93** mm and **A =0.57** mm

Worked example 1: "O" ring selection of a pneumatic cylinder

A pneumatic cylinder has a nominal diameter of D1=Ø25 mm. Using
 BS4518, select a suitable "O" ring and determine the groove dimensions in piston and piston diameter.

- Key dimensions
 - F radial depth
 - **E** groove width
 - **G** total clearance
 - C lead–in chamfer
 - **R** radius
 - D2 piston diameter


• NUsearch for BS documents


https://nusearch.nottingham.ac.uk/

Worked example 1: "O" ring selection of a pneumatic cylinder

For nominal cylinder dia D1=Ø25 mm, use BS4518

- From Table 1, 0221-16, 0206-24 and 0195-30 are all suitable to use,
- From Table 4, for **pneumatic** applications, **0195-30** is the **only suitable option**.

From Table 4, BS 4518:

Depth F = 2.70~2.77

Width **E** = 4.0 ^{+0.2}

Clearance Gmax = 0.15

Chamfer C = 0.7

Radius R = 1.0

A quick Google search to order the chosen 0195-30 Oring from, e.g. https://uk.rs-online.com/web/ or https://www.jameswalker.biz/ en/product_types/39-o-rings

Seals Part 1

Seals

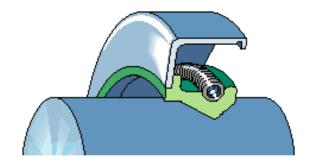
End of Part 1

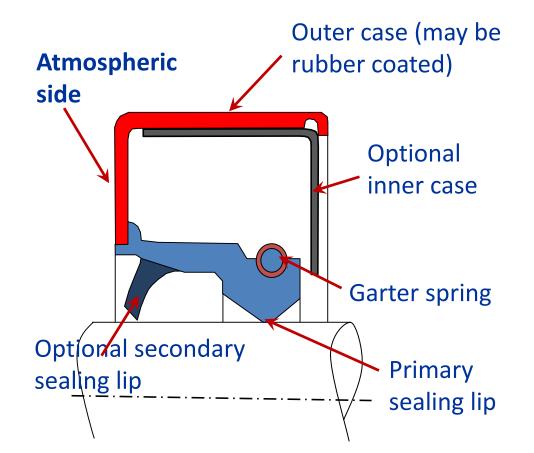
Seals

Part 2

Seals Part 2

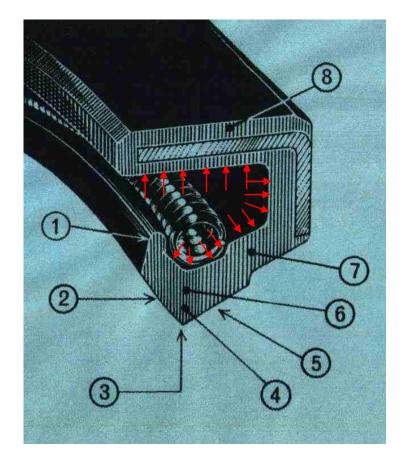
Sealing rotating shafts


- Low Pressure & Low Temperature
 - 'O' rings
 - Radial lip seals
 - Axial lip seals
- High pressure
 - High performance lip seals
 - Mechanical Seals
- High Temperature
 - Labyrinth seals an example of interstitial seals

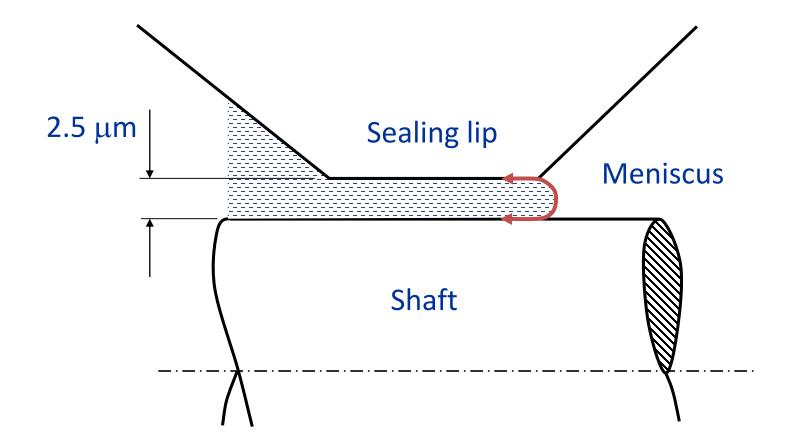

'O' Rings

- 'O' rings can be used for in **dynamic** applications
- Friction is high, but sealing is good within their operating range (up to 14 bar & 3.8 m/s)
- Surface roughness must not exceed 0.4mm Ra, though should have some roughness (e.g. 0.1mm Ra)
- Spiral and abrasion are the main failure modes (if installed correctly)

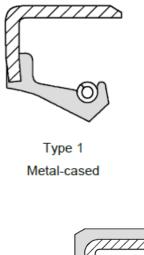
Radial lip seal anatomy

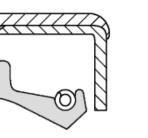

- Low pressure (0.3 0.6 bar up to 7 bar with backing plate)
- Moderate speed (up to 16m/s)
- Temperature (up to 100 °C or even higher)
- Normal environmental condition
- Slight leakage permitted
- Normally made of Nitrile rubber compounds

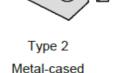
Seals for rotating shafts: low pressure and temperature


- Metal insert lip seal
- Flexible spring loaded sealing lip bears lightly onto the shaft sealing surface
- Fluid pressure must act on spring side

Seals Part 2

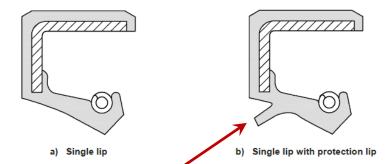

Seals Part 2


Lip seals - how do they work?

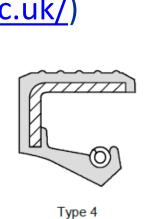


Lip seals - available types

BS ISO 6194-1: 2007 defines 4 basic types of rotary shaft lip seals (https://nusearch.nottingham.ac.uk/)

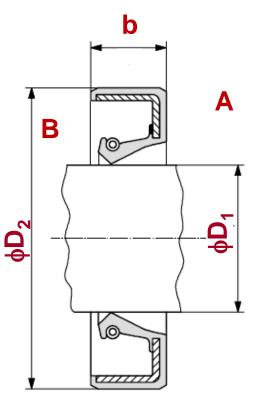


with inner case

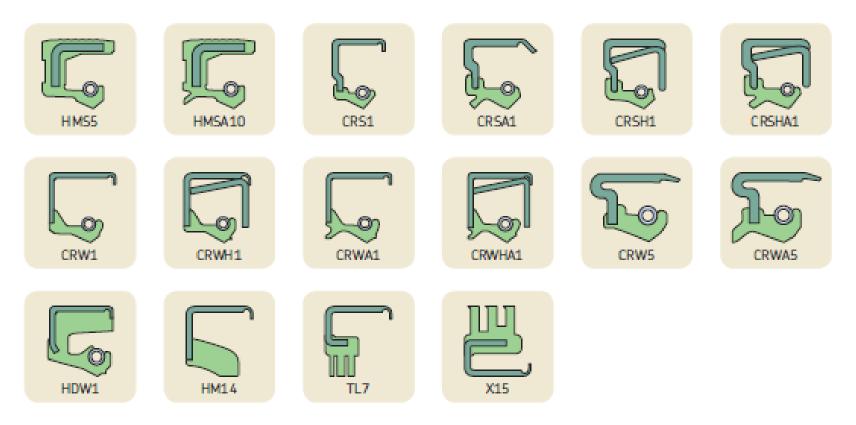

Semi-rubber-covered metal-cased

D

Type 3


Secondary lip to exclude dirt but can cause temperature to rise

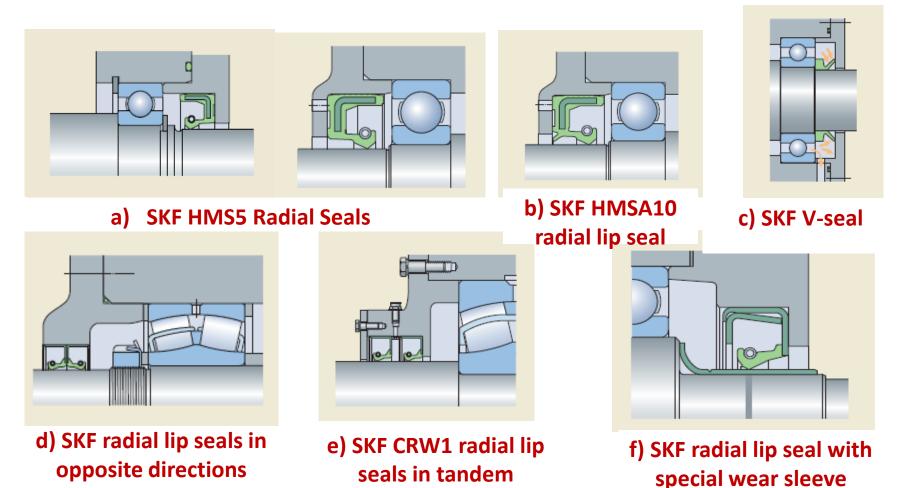
Rubber-covered metal-cased


where,

- **D1** nominal dia of shaft
- **D2** nominal dia of housing
- **b** nominal seal width
- **A** Air side
- **B** Fluid side

More variations of radial lip seals

• Radial lip seals for general applications

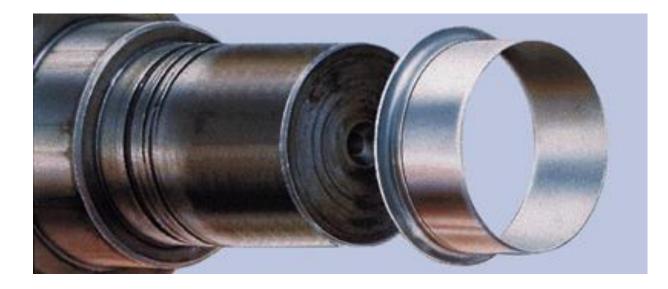

Industrial Shaft Seals documents are available from SKF website: <u>https://www.skf.com/group/products/industrial-seals/power-transmission-seals</u>

Or other manufacturers, e.g. **Trelleborg**, <u>https://www.tss.trelleborg.com/-/media/tss-media-</u> repository/tss_website/pdf-and-other-literature/catalogs/rotary_gb_en.pdf?revision=876a4291-be84-40af-93fa-fd8bff3925e0

Methods of Seals Mounting

Seals Part 2

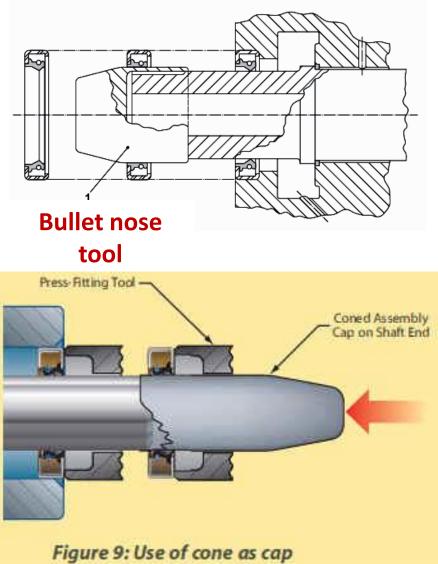
• Use of radial lip seals and mounting of bearings & seals


Industrial Shaft Seals documents are available from SKF website: <u>https://www.skf.com/binaries/pub12/Images/0901d1968099986c-Industrial-Shaft-Seals-</u> <u>catalogue_tcm_12-524179.pdf#cid-524179</u>

How can oil seals fail?

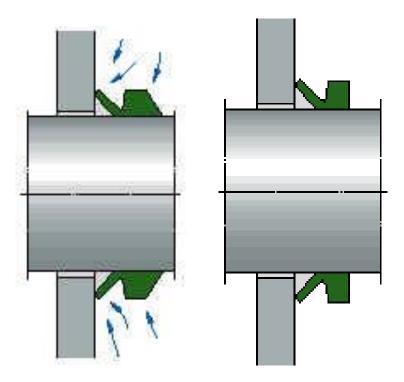
- Deterioration of the metal surface
 - Lip causes pressure to be exerted on shaft
 - If not lubricated, wear will take place
 - Shaft surface should be hardened (45 Rockwell C) and grinded
 - Surface must be 0.2 μm R_a to 0.63 μm R_a and 0.8 μm R_{max} to 2.5 μm R_{max}
- Deterioration of seal lip due to:
 - Damage during installation
 - Dirt particles in service

Repair


- Once a shaft is worn, it must be reground or repaired and the seal replaced
- Sleeving can be a cheaper alternative to regrinding

Seals Part 2

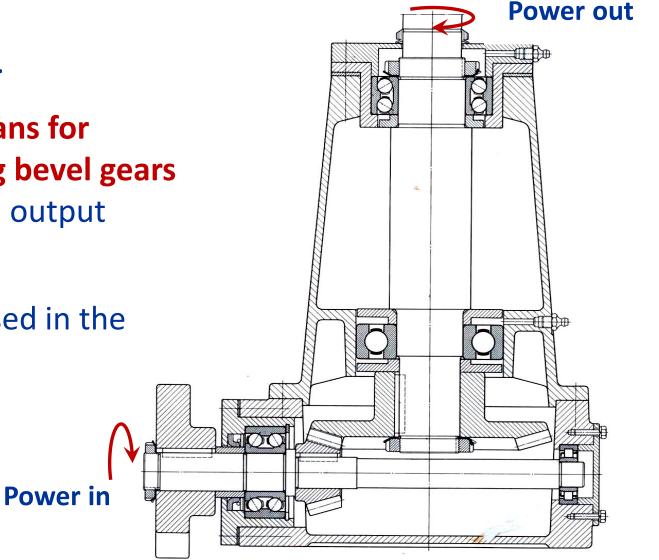
Avoiding damage during installation


- Assemble seal onto shaft, then into bore.
- Special assembly tools to slide seal over splines on shaft.
- Chamfers on housing and shaft.
- Clean installation.

Seals Part 2

Axial lip (face) seals

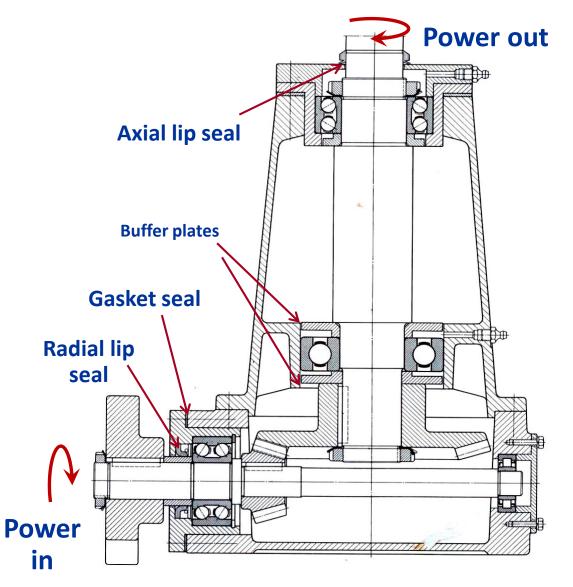
- The seal is mounted on the shaft
- The lip runs against a counter face
- Better tolerance of eccentricity and out-of-round
- Can withstand higher pressures
- Better tolerance of abrasion & dirt
- Assembly and axial placement of the seal are trickier



SKF 'V' Seal https://www.skf.com/group/product s/industrial-seals/powertransmission-seals/v-ring-seals

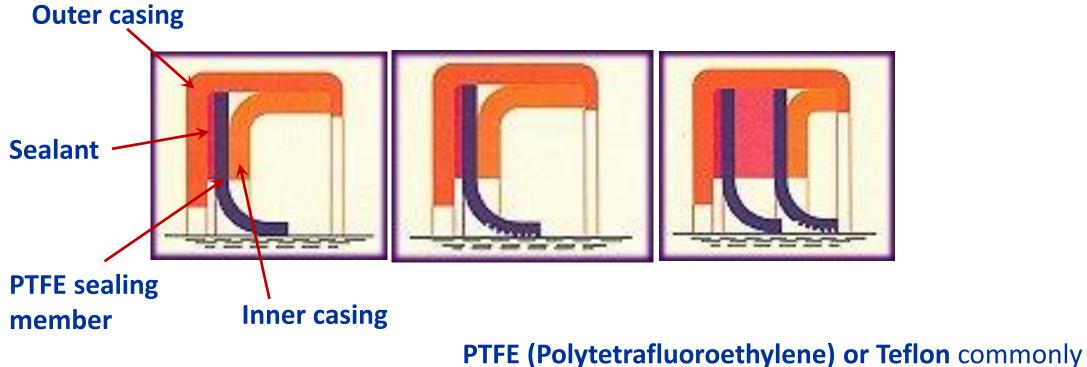
Quiz 2: Suitable lubricant and seals for the bevel gearbox Seals Part 2

This is the SKF bevel gearbox.


- What are the suitable means for lubrication of the meshing bevel gears and bearings on input and output shafts?
- What types of seals are used in the bevel gearbox and why?

SKF Bevel gear unit

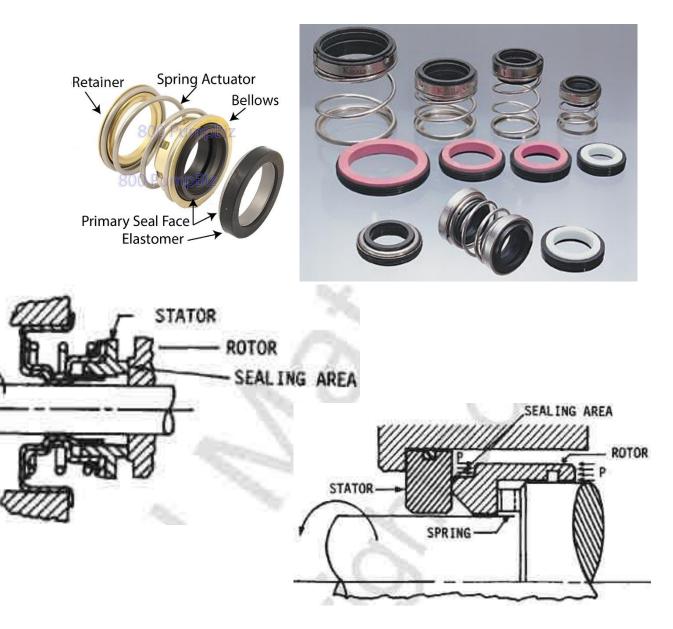
Answer 2: Suitable seals for bevel gearbox


- What type of lubricant is used for Input (high speed) shaft?
 - Oil lubricant (oil bath) sealed
 by Radial lip seal & gasket
- What type of lubricant is used for output (low speed) shaft?
 - Grease by buffer plates & axial lip seals

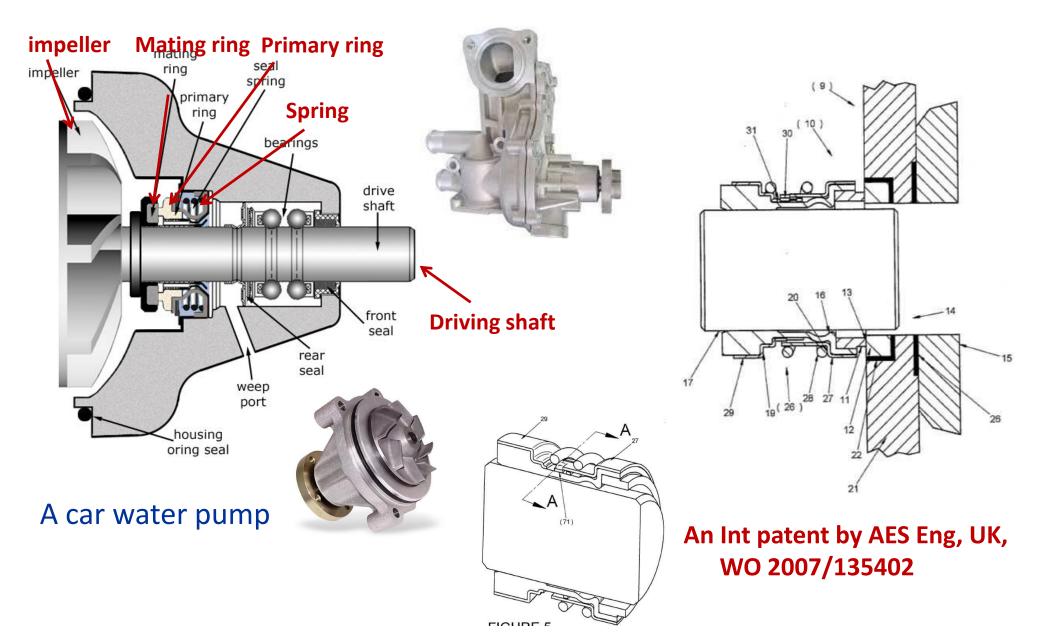
SKF Bevel gear unit

High pressure: higher performance lip seals

• Higher performance can be obtained using PTFEbased lip seals due to its very low friction



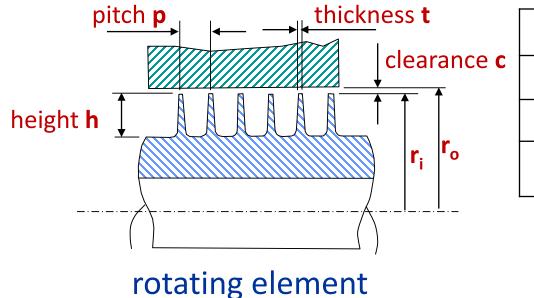
used in coating non-sticking pans & cookware


Seals Part 2

High Pressure: mechanical seals

- Two sealing rings, one attached to the rotating shaft & the other to the stationary member
- Axial springs provide sealing pressure
- Carbon ring running on metal face
- For applications where low leakage, high reliability & low wear are important

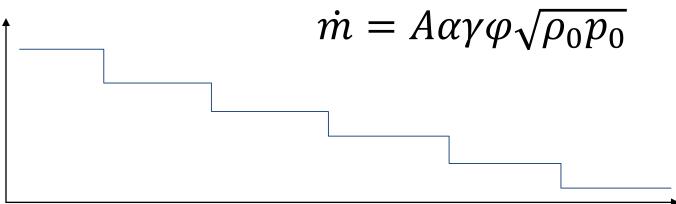
Examples of mechanical seal



Hot conditions, high speed: Labyrinth seals

• Series of radial fins forming a restriction to an annular flow of fluid

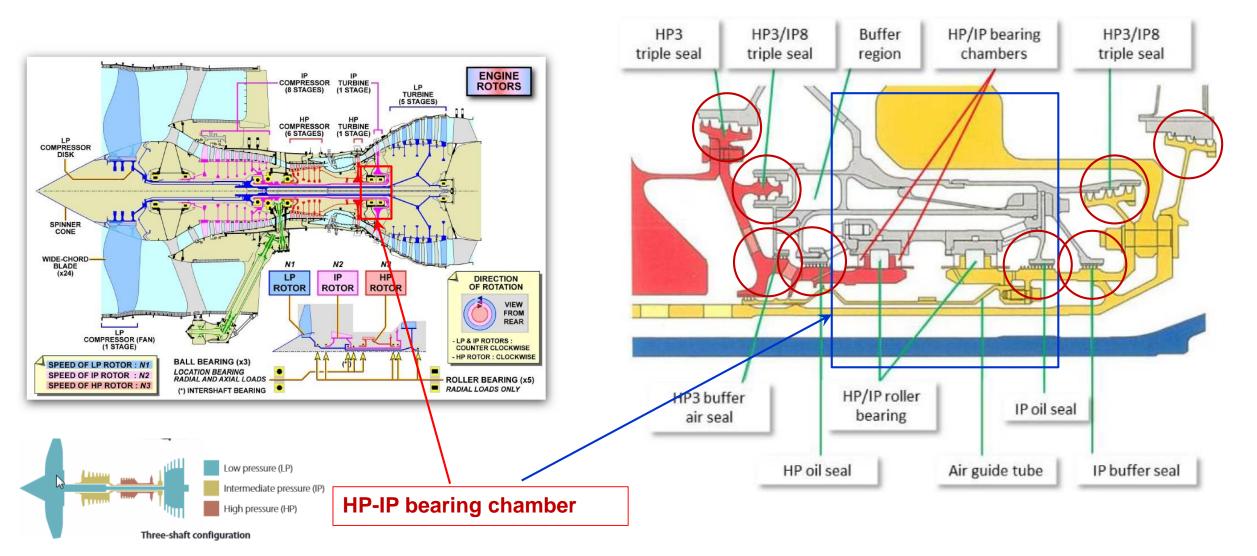
Guideline for fin dimensions



t (mm)	p (mm)	h (mm)
0.3-0.4	6-8	4 – 5
0.28 – 0.32	4 – 5	3 – 3.5
0.18 - 0.22	1.8 – 2.2	1.8–2.2

Seals Part 2

Flow through labyrinth seals



Labyrinth seals

- Static head is converted into dynamic head
- When narrow gaps open into wide spaces, dynamic head is lost
- This creates a series of pressure drops
- Cannot provide positive (total) seal
- Will leak if the machine stops
- Used in large machines: aeroengines, turbines, etc.

Labyrinth seals in aeroengine applications Seals Part 2

• Rolls-Royce Trent 1000 three shaft jet engine

Mass flow rate by Egli (1935)

$\dot{m} = A\alpha\gamma\varphi\sqrt{\rho_0p_0}$				
$\dot{m} = mass flow rate$	(kg/s)			
$A = \pi \left(r_o^2 - r_i^2 \right) \text{area of}$	gap (m²)			
$\alpha = $ flow coefficien t	=			
0.71 for $1.3 < c/t < 2.3$				
γ = carry over correction factor				
arphi = expansion ratio $arphi$ = $arphi$	$\frac{1 - \left(\frac{p_n}{p_o}\right)^2}{n - \ln\left(\frac{p_o}{p_n}\right)}$			
ρ_0 = density at the upstr	ream condition			

 $\rho_0 = \text{density at the upstream condition (kg/m³)}$ $p_0 = \text{upstream pressure}$ (Pa) $p_n = \text{downstream pressure}$ (Pa)

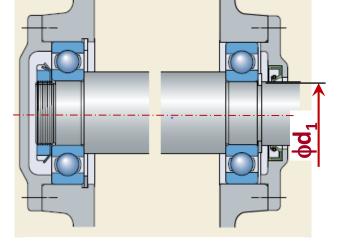
Carryover correction factor	No. of fins <i>n</i>	
γ = 1 + 3.27 (c/p)	2	
γ = 1 + 5 (c/p)	3	
γ = 1 + 6.73 (c/p)	4	
γ = 1 + 8.82 (c/p)	6	
γ = 1 + 10.2 (c/p)	8	
γ = 1 + 11.2 (c/p)	12	
c – radial clearance (m), p – pitch (m)		

The compromise

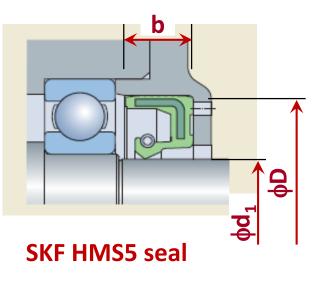
Selection of a seal type depends on fluid pressure, shaft speed & level of sealing

Level of seal Type of seals Working condition Longevity Low pressure & low temperature & low Negligible Short life **'O'** rings leakage speed High friction Low/high pressure & Lip seals & low/high temperature & Slight Moderate mechanical moderate/high speed leakage life seals Some friction High temperature & High Labyrinth seals high speed Long life leakage No friction

Level of seal vs wear/friction/longevity


Worked example 2: Selection of a radial lip seal

Select a radial lip seal for a shaft sub-assembly. Shaft dia is $\phi d_1 = \phi 25$ mm, housing dia is $\phi D = \sim \phi 40$ mm and housing width is b = 5~7 mm.


<u>Note</u>: Shaft dia (ϕ d1) is normally determined by the required torque capability. The sizes, such as the housing dia (ϕ D) and width (b) may vary based on other considerations.

From **SKF website** at <u>https://www.skf.com/uk/products/industrial-</u> <u>seals</u>, a suitable radial lip seal may be chosen.

- HMS5 25x40x5RG or HMS5 25x40x7RG may be chosen for this application.
- A CAD model may also be download from the website

A shaft sub-assembly

Seals Part 2

Seals

End of Part 2

Seals

Part 3

Sealing reciprocating shafts

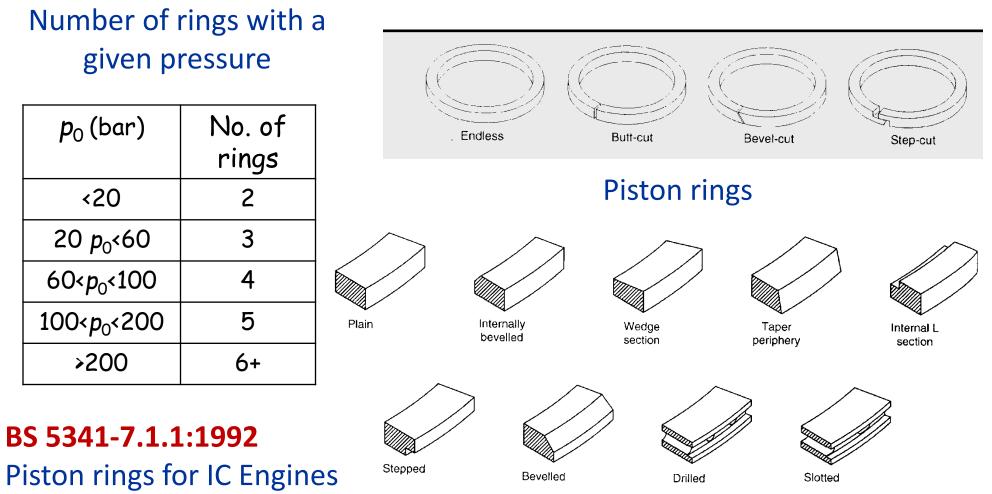
- High temperature, high speed
 - Piston rings
- High temperature, low speed
 - Stuffing box
- Low temperature/Hydraulic
 - 'O' rings
 - Lip seals/packings: 'U', 'V' and cup

Seals Part 3

High temperature and speed: piston rings

- Piston rings are usually machined from a fine grain alloy cast iron and must be split to assembly over the piston
- Spring of the rings keeps them in contact with the cylinder

High temperature and speed: piston rings

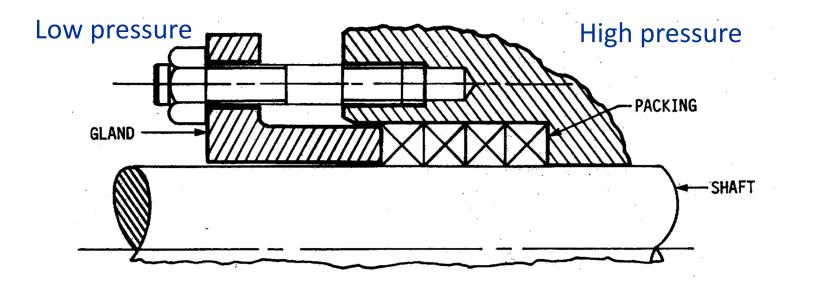

Performance is largely dependent on a **high surface finish** on both bore & rubbing surface of the rings

> Piston rings wear to A parabolic profile

piston

cylinder

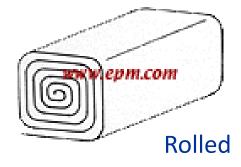
High temperature and speed: piston rings

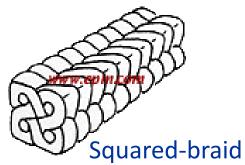


Piston ring sections

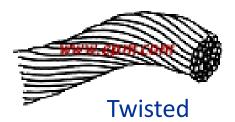
Seals Part 3

High temperature, low speed: stuffing box

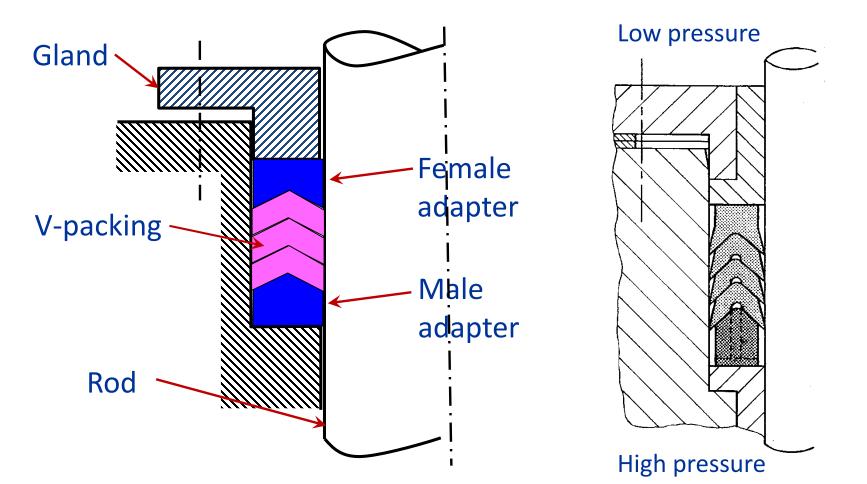

- Packing is compressed within housing
- Creates pressure between packing & shaft
- Leather, solid rubber or fabric-reinforced rubber may be used as packing materials



Seals Part 3


Packing types

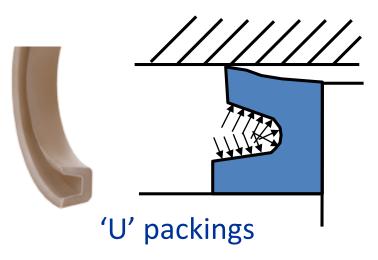
- Various types of packing are available allowing variations in:
 - chemical resistance
 - temperature resistance
 - frictional characteristics
 - longevity
 - lubricant-carrying capacity
 - sealing capability
- Packings are spiral wound into the gap

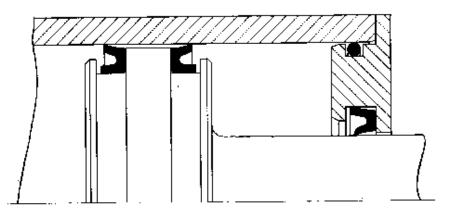


Stuffing box: often packed with chevronsection or 'V' packing rings

Seals Part 3

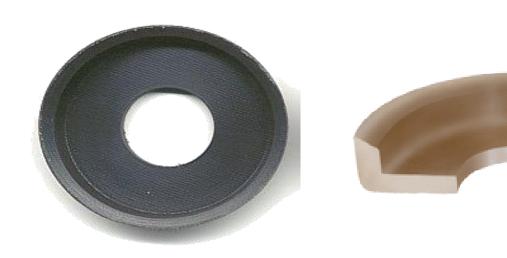
 <u>'V' packing</u> is mainly used for sealing piston rods and reciprocated shafts for high pressure conditions




Cold conditions, slow movement – e.g. hydraulic & pneumatic

• 'O' rings, 'U' & Cup packings may be used;

<u>'U' rings</u>


- Provides sealing for pistons or piston rods (in one direction only)
- When pressure is applied:
 - one lip is forced against stationary member
 - other is forced against moving member
- Similar pressure range as 'O' rings and backup rings used for higher pressure

Cold conditions, slow movement – e.g. hydraulic & pneumatic Cup packing

- Cup packing has dynamic seal with cylinder but static seal with piston
- It is uni-directional seal so two cups back to back for double-acting piston seals

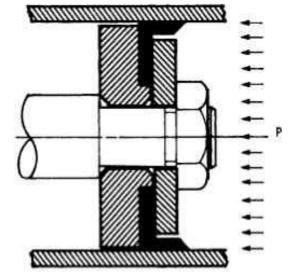
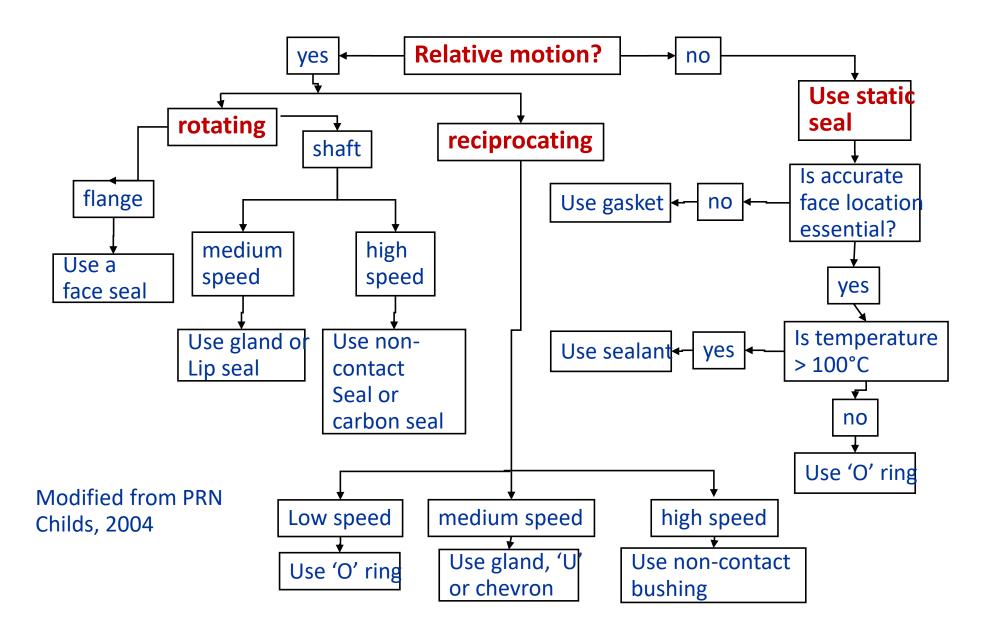
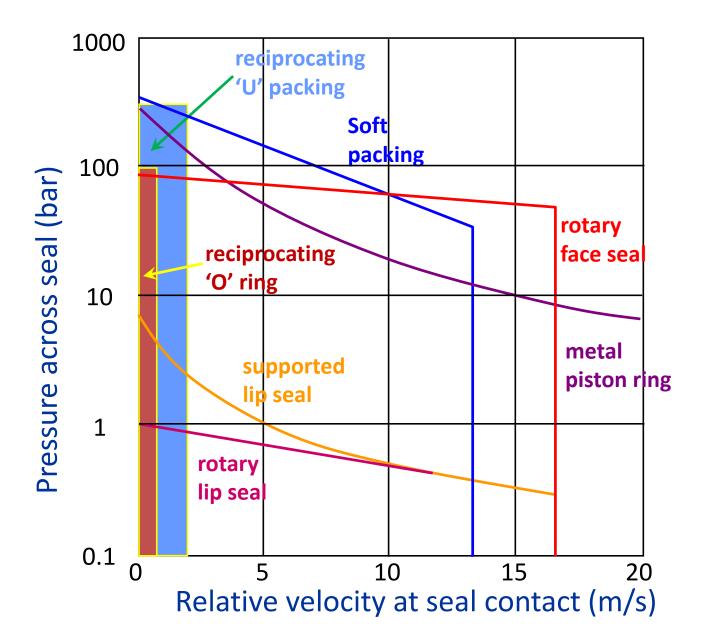


FIGURE 21.14 Cup packing for single-acting cylinder.


"U" rings and cup packing

- Working ranges:
 - Cup packing
 - "U" packing
 - "U" packing with metal insert
 - With close working clearances
 - Operating speeds


up to 35 bar **up to 100 bar up to 250 bar** up to 400 bar 0 - 25 m/s

- "U" rings for higher pressures
- Made of harder materials than rubber
 - \circ Nylon
 - Polyurethane
 - \circ PTFE
 - \circ Glass-filled
- Typically have a spring insert for 'pre-energisation'

Seal Selection

Limits of pressure and speed

Seals Part 3

Quiz 3: True or False to each of the following statements in seal selection

- **A. "O" rings** may be used as a means of sealing a machine of **rotating** and reciprocating motions.
- B. Extrusion is a form of "O" ring failure due to incorrect installation.
- **C.** Radial lip seals are commonly used in machines at low speed and low temperature, e.g. gearbox in wind turbine.
- D. Gasket seals made of different types of polymeric materials are commonly used for static applications.
- E. A **labyrinth seal** can provide **total seal** of a high speed turbine machine.

Quiz 3: True or False to each of the following statements in seal selection

- A. "O" rings may be used as a means of sealing a machine of rotating and reciprocating motions. (true)
- B. Extrusion is a form of "O" ring failure due to incorrect installation. (false)
- **C.** Radial lip seals are commonly used in machines at low speed and low temperature, e.g. gearbox in wind turbine. <u>(true)</u>
- D. Gasket seals made of different types of polymeric materials are commonly used for static applications. <u>(true)</u>
- E. A **labyrinth seal** can provide **total seal** of a high speed turbine machine. <u>(false)</u>

Summary

- An introduction different types of seals for different operational or working conditions
- Understanding of "O" ring, radial and face lip seals and their general operation conditions;
- Selection of an "O" ring or radial lip seal for static and rotating conditions;
- Use of Seal manufacturers, e.g. SKF, Trelleborg or James Walker website and BS standard for the selection of "O" ring and radial lip seals.

Revision Questions

- a) How are seals classified based on the forms of motion?
- b) What are **basic approaches** of different types of seals to prevent or limit leakage of a machine system?
- c) How is a BS 4518:1982 "O" ring codified to define its dimensions?
- d) Do you know the common forms of "O" ring failure and ways for failure prevention?
- e) Can you use BS 4518:1982 to choose an "O" ring and define appropriate groove dimensions?
- f) Can you name a few seal types for rotating shafts at various working conditions?
- g) Can you use a manufacturer's catalogue, e.g. by SKF or Trelleborg to select a radial lip seal for gearbox in an electric car, Nissan Leaf?
- h) How do you evaluate the level of performance of labyrinth seals for high speed and high temperature application, e.g. aeroengine shaft?

References

- <u>http://www.marcorubber.com/</u>
- <u>http://www.jameswalker.biz/product_range/41--O-ring-all-stocked-ranges</u>
- <u>http://de.dichtomatik.com/en/produktkatalog/o_ringe/</u>
 - Online "O" ring catalogue and selection guidelines
- <u>https://www.skf.com/group/products/industrial-seals/power-transmission-seals</u>
- <u>https://www.skf.com/binaries/pub12/Images/0901d1968099986c-Industrial-Shaft-Seals-catalogue_tcm_12-524179.pdf#cid-524179</u>
- <u>https://www.tss.trelleborg.com/global/en/homepage/homepage.html</u>
- <u>https://www.tss.trelleborg.com/-/media/tss-media-repository/tss_website/pdf-and-other-literature/catalogs/rotary_gb_en.pdf?revision=876a4291-be84-40af-93fa-fd8bff3925e0</u>
 - $\circ~$ Online Radial lip seal catalogue and selection guidelines
- BS 4518:1982: Metric dimensions of O-ring and housing
- BS ISO 3601-1 to 5: O-Rings for fluid power systems
- BS 5106:1988: Specifications of spiral backup rings
- Childs, R.N., 2004. Mechanical Design, Elsevier
- Shigley, J.E. and Mischke, C.R. (Eds.), 2004. *Standard Handbook of Machine Design*, McGraw-Hill, Chapter 26

Seals

End of Session